A Nonlinear Optimization Procedure for Generalized Gaussian Quadratures
نویسندگان
چکیده
Gaussian quadratures for a broad class of functions. While some of the components of this algorithm have been previously published, we present a simple and robust scheme for the determination of a sparse solution to an underdetermined nonlinear optimization problem which replaces the continuation scheme of the previously published works. The performance of the resulting procedure is illustrated with several numerical examples.
منابع مشابه
On Generalized Gaussian Quadratures for Bandlimited Exponentials
We review the methods in [4] and [24] for constructing quadratures for bandlimited exponentials and introduce a new algorithm for the same purpose. As in [4], our approach also yields generalized Gaussian quadratures for exponentials integrated against a non-sign-definite weight function. In addition, we compute quadrature weights via l and l∞ minimization and compare the corresponding quadratu...
متن کاملODE solvers using band-limited approximations
Abstract. We use generalized Gaussian quadratures for exponentials to develop a new ODE solver. Nodes and weights of these quadratures are computed for a given bandlimit c and user selected accuracy ǫ, so that they integrate functions e, for all |b| ≤ c, with accuracy ǫ. Nodes of these quadratures do not concentrate excessively near the end points of an interval as those of the standard, polyno...
متن کاملNumerical quadratures and orthogonal polynomials
Orthogonal polynomials of different kinds as the basic tools play very important role in construction and analysis of quadrature formulas of maximal and nearly maximal algebraic degree of exactness. In this survey paper we give an account on some important connections between orthogonal polynomials and Gaussian quadratures, as well as several types of generalized orthogonal polynomials and corr...
متن کاملOn Generalized Gaussian Quadratures\ for Exponentials and Their Applications
We introduce new families of Gaussian-type quadratures for weighted integrals of exponential functions and consider their applications to integration and interpolation of bandlimited functions. We use a generalization of a representation theorem due to Carathéodory to derive these quadratures. For each positive measure, the quadratures are parameterized by eigenvalues of the Toeplitz matrix con...
متن کاملGeneralized Gaussian Quadrature Rules for Discontinuities and Crack Singularities in the Extended Finite Element Method
New Gaussian integration schemes are presented for the efficient and accurate evaluation of weak form integrals in the extended finite element method. For discontinuous functions, we construct Gauss-like quadrature rules over arbitrarily-shaped elements in two dimensions without the need for partitioning the finite element. A point elimination algorithm is used in the construction of the quadra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 32 شماره
صفحات -
تاریخ انتشار 2010